ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 389]      



Задача 109698

Темы:   [ Связность и разложение на связные компоненты ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5
Классы: 8,9,10

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

Прислать комментарий     Решение

Задача 109813

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10

В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?

Прислать комментарий     Решение

Задача 110750

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
[ Четность и нечетность ]
Сложность: 5
Классы: 8,9,10,11

Автор: Астахов В.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

Прислать комментарий     Решение

Задача 111801

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Подсчет двумя способами ]
[ Задачи с ограничениями ]
Сложность: 5
Классы: 8,9,10,11

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Прислать комментарий     Решение

Задача 111840

Темы:   [ Степень вершины ]
[ Раскраски ]
[ Остовы многогранных фигур ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5
Классы: 9,10,11

У выпуклого многогранника одна вершина A имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета хорошей, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из A , покрашены в один цвет.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 389]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .