ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным. Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"? Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый? Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равны делимое, делитель и частное? В первом пенале лежат лиловая ручка, зелёный карандаш и красный ластик; во втором – синяя ручка, зелёный карандаш и жёлтый ластик; в третьем – лиловая ручка, оранжевый карандаш и жёлтый ластик. Содержимое этих пеналов характеризуется такой закономерностью: в каждых двух из них ровно одна пара предметов совпадает и по цвету, и по назначению. Что должно лежать в четвёртом пенале, чтобы эта закономерность сохранилась? (В каждом пенале лежит ровно три предмета: ручка, карандвш и ластик.) Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов? Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным. В этом предложении ______________________ гласных букв. Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа? Угол при вершине журавлиного клина равен 20°. Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд? Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета. Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр. Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число? На острове живут два племени — аборигены и пришельцы. Известно, что аборигены всегда говорят правду, пришельцы — всегда лгут. Путешественник нанял туземца-островитянина в проводники. По дороге они встретили какого-то человека. Путешественник попросил проводника узнать, к какому племени принадлежит этот человек. Проводник вернулся и сообщил, что человек назвался аборигеном. Кем был проводник — аборигеном или пришельцем? Напишите вместо пропуска число (буквами, а не цифрами!), чтобы получилось истинное предложение:
В ЭТОМ ПРЕДЛОЖЕНИИ ... БУКВ
(к последнему слову, возможно, придётся добавить окончание, чтобы фраза
правильно звучала по-русски).
|
Страница: 1 2 3 >> [Всего задач: 12]
Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка [1, 2] и заставляет программу решать уравнение 3x + A = 0. Найдите вероятность того, что корень этого уравнения меньше чем –0,4.
Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.
Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.
В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке