Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418]
|
|
Сложность: 5- Классы: 10,11
|
Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что
f (0) = f (1) = 0 и что
|f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям?
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x).
Определение средних степенных Sα(x) можно посмотреть в справочнике.
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём
Определение средних степенных Sα(x) можно посмотреть в справочнике.
|
|
Сложность: 5- Классы: 10,11
|
Внутри круга радиуса R взята точка A. Через неё проведены две
перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки A. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке A. Найдите площадь креста.
|
|
Сложность: 5- Классы: 8,9,10,11
|
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина
палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя
повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418]