Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 829]
На каждом из оснований AD и BC трапеции ABCD построены вне
трапеции равносторонние треугольники.
Докажите, что отрезок, соединяющий третьи вершины этих треугольников, проходит через точку пересечения диагоналей трапеции.
На основаниях трапеции как на сторонах построены во внешнюю сторону два квадрата. Докажите, что отрезок, соединяющий центры квадратов, проходит через точку пересечения диагоналей трапеции.
Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P – произвольная точка. Прямая la проходит через точку A параллельно прямой PA1, прямые lb и lc определяются аналогично. Докажите, что
а) прямые la, lb и lc пересекаются в одной точке (обозначим её через Q);
б) точка M лежит на отрезке PQ, причём PM : MQ = 1 : 2.
На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок).
Докажите, что прямые, соединяющие вершины треугольника ABC с соответствующими вершинами треугольника A1B1C1, пересекаются в одной точке.
а) Точки
A, B и
C лежат на одной прямой, а точки
A1,
B1 и
C1 – на другой. Докажите, что если
AB1 ||
BA1 и
AC1 ||
CA1, то
BC1 ||
CB1.
б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что
AB1 || BA1, AC1 || CA1 и BC1 || CB1.
Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 829]