Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 831]
Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.
Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что AB/AE + AD/AF = AC/AG.
Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
Докажите, что центр вписанной окружности треугольника ACH лежит на перпендикуляре, опущенном из точки P на AC.
В трапеции ABCD BC < AD, AB = CD, K – середина AD, M – середина CD, CH – высота.
Докажите, что прямые AM, CK и BH пересекаются в одной точке.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.
Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 831]