Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 831]      



Задача 65380

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 10,11

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

Прислать комментарий     Решение

Задача 65591

Темы:   [ Ромбы. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 7,8,9

Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K, N и D лежат на одной прямой.

Прислать комментарий     Решение

Задача 65684

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 9,10,11

Внутри трапеции ABCD с основаниями AD и BC отмечены точки M и N так, что  AM = CN  и  BM = DN,  а четырёхугольники AMND и BMNC – вписанные. Докажите, что прямая MN параллельна основаниям трапеции.

Прислать комментарий     Решение

Задача 65694

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Обухов Б.

Дан равнобедренный треугольник ABC,  AB = BC.  В описанной окружности Ω треугольника ABC проведён диаметр CC'. Прямая, проходящая через точку C' параллельно BC, пересекает отрезки AB и AC в точках M и P соответственно. Докажите, что M – середина отрезка C'P.

Прислать комментарий     Решение

Задача 66136

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Перпендикулярные прямые ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.

Прислать комментарий     Решение

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .