Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 603]
На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$.
Докажите, что $EK=KO$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри треугольника $ABC$ взята такая точка $M$, что $AM = \frac{1}{2} AB$, а $CM = \frac{1}{2} BC$. Точки $C_0$ и $A_0$ взяты на отрезках $AB$ и $CB$ соответственно, причем $BC_0 : AC_0 = BA_0 : CA_0 = 3$. Докажите, что $M$ равноудалена от $C_0$ и $A_0$.
а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?
б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?
Барон Мюнхгаузен утверждает, что смог разрезать некоторый равнобедренный треугольник на три треугольника так, что из любых двух можно сложить равнобедренный треугольник. Не хвастает ли барон?
В треугольнике ABC угол B равен 90°, AB = BC = 2. На основании AC взяты точки K и L так, что три угла между BA и BK, BK и BL, BL и BC соответственно равны между собой. Найдите длину отрезка BK.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 603]