|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан квадрат со Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение 5 ± 1, а если на доске были числа 1, 2 и 3, то подойдёт выражение (2 ± 0,5) ± 0,5. Возможно ли составить необходимое выражение, если на доске были написаны Прямая OA касается окружности в точке A, а хорда BC
параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L. На продолжениях сторон DA, AB, BC, CD выпуклого четырехугольника ABCD взяты точки A1, B1, C1, D1 так, что Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек). |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 604]
Радиус вписанной в треугольник PQR окружности равен 5, причём RP = RQ. На прямой PQ взята точка A, удалённая от прямых PR и QR на расстояния 12 и 2 соответственно. Найдите косинус угла AQR.
Дана равнобедренная трапеция ABCD. Известно, что AD = 10, BC = 2, AB = CD = 5. Биссектриса угла BAD пересекает продолжение основания BC
На луче OX отложены последовательно точки A и C, а на луче
OY – B и D. При этом OA = OB и AC = BD. Прямые AD и BC пересекаются в точке E.
Дана незамкнутая ломаная ABCD, причём AB = CD, ∠ABC = ∠BCD и точки A и D расположены по одну сторону от прямой BC. Докажите, что AD || BC.
Равные отрезки AB и CD пересекаются в точке K. Известно, что AC || BD. Докажите, что треугольники AKC и BKD равнобедренные.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 604] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|