|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны три точки A, B, C, лежащие на одной прямой, и точка O вне этой прямой. Обозначим через O1, O2, O3 центры окружностей, описанных около треугольников OAB, OAC, OBC. Доказать, что точки O1, O2, O3 и O лежат на одной окружности. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 355]
Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.
Докажите равенство треугольников по двум сторонам и медиане, проведенной к одной из них.
Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.
На сторонах AB, BC и CA равностороннего треугольника ABC отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками.
Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 355] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|