Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

При всех значениях параметра a найдите число действительных корней уравнения  x³ – x – a = 0.

Вниз   Решение


Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

ВверхВниз   Решение


Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

ВверхВниз   Решение


Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Найдите площадь треугольника ABC, если известно, что  OC = 5.

ВверхВниз   Решение


В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

ВверхВниз   Решение


  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1358]      



Задача 102289

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Медиана DM треугольника DEF равна половине стороны EF. Один из углов, образованных при пересечении стороны EF биссектрисой DL, равен 55°.
Найдите углы треугольника DEF.

Прислать комментарий     Решение

Задача 102410

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан треугольник KLM с основанием KM, равным $ {\frac{\sqrt{3}}{2}}$, и стороной KL, равной 1. Через точки K и L проведена окружность, центр которой лежит на высоте LF, опущенной на основание KM. Известно, что FM = $ {\frac{\sqrt{3}}{6}}$. и точка F лежит на KM. Найдите площадь круга, ограниченного этой окружностью.

Прислать комментарий     Решение


Задача 102421

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E,  AB = AD,  CA – биссектриса угла C,  ∠BAD = 140°,  ∠BEA = 110°.
Найдите угол CDB.

Прислать комментарий     Решение

Задача 102472

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AB = c,  AC = b > c,  AD – биссектриса. Через точку D проведена прямая, перпендикулярная AD и пересекающая AC в точке E.
Найдите AE.

Прислать комментарий     Решение

Задача 102493

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1358]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .