ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1354]      



Задача 55534

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 35550

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 9

Через фиксированную точку внутри окружности проводятся всевозможные пары взаимно перпендикулярных хорд.
Докажите, что сумма квадратов их длин – величина постоянная.

Прислать комментарий     Решение

Задача 52439

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Гипотенуза AB прямоугольного треугольника ABC равна 2 и является хордой некоторой окружности. Катет AC равен 1 и лежит внутри окружности, а его продолжение пересекает окружность в точке D, причём  CD = 3.  Найдите радиус окружности.

Прислать комментарий     Решение

Задача 52643

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

Прислать комментарий     Решение

Задача 52760

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

В окружности радиуса R проведена хорда, равная R/2. Через один конец хорды проведена касательная к окружности, а через другой – секущая, параллельная касательной. Найдите расстояние между касательной и секущей.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .