Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 180]
В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB, O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b, OC = 3b/2. Найдите площадь треугольника ABC.
|
|
Сложность: 4- Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены высоты BB1 и CC1. A0 – середина стороны BC. Прямые A0B1 и A0C1 пересекают прямую, проходящую через вершину A параллельно прямой BC, в точках P и Q. Докажите, что центр вписанной окружности треугольника PA0Q лежит на высоте треугольника ABC.
На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что AK = BL = a,
KM = LM = b и угол KML прямой. Докажите, что a = b.
Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.
В треугольнике ABC точка M – середина стороны BC,
AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что XY || BC .
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 180]