ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 789]
Найдите катеты прямоугольного треугольника, если
известно, что радиус описанной около треугольника
окружности равен R , а радиус вписанной в него
окружности равен r . При каком отношении
Продолжение биссектрисы AD треугольника ABC пересекает описанную окружность в точке M. Пусть Q - центр окружности, вписанной в треугольник ABC. Докажите, что треугольники MBQ и MCQ - равнобедренные.
В равнобедренном треугольнике основание равно 48, а боковая сторона равна 30. Найдите радиусы описанной и вписанной окружностей и расстояние между их центрами.
Радиус окружности, вписанной в прямоугольный треугольник с
острым углом
60o, равен
CD - медиана треугольника ABC. Окружности вписанные в треугольники ACD и BCD касаются отрезка CD в точках M и N. Найдите MN, если AC - BC = 2.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 789]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке