ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 531]
В прямоугольный треугольник ABC вписан квадрат так, что две его вершины лежат на гипотенузе AB, а две другие — на катетах. Радиус круга, описанного около треугольника ABC, относится к стороне квадрата как 13:6. Найдите углы треугольника.
Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны.
Диаметр AB окружности продолжили за точку B и на продолжении отметили точку C. Из точки C провели секущую под углом к AC в 7o, пересекающую окружность в точках D и E, считая от точки C. Известно, что DC = 3, а угол DAC равен 30o. Найдите диаметр окружности.
В окружности диаметра 4 проведены диаметр AB и хорда CD, пересекающиеся в точке E. Известно, что углы ABC и BCE равны соответственно 60o и 8o. Найдите CE.
В треугольнике ABC ∠CAB = 75°, ∠ABC = 45°. На стороне CA берётся точка K, а на стороне CB – точка M, CK : AK = 3 : 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 531]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке