ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



Задача 66943

Темы:   [ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Tran Quang Hung

В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.
Прислать комментарий     Решение


Задача 67124

Темы:   [ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Неопределено ]
Сложность: 4-
Классы: 8,9,10,11

Пусть высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Окружность, описанная около треугольника $AHC$, пересекает отрезки $AB$ и $BC$ в точках $P$ и $Q$. Прямая $PQ$ пересекает $AC$ в $R$. На прямой $PH$ взята точка $K$ такая, что $\angle KAC = 90^{\circ}$. Докажите, что прямая $KR$ перпендикулярна одной из медиан треугольника $ABC$.
Прислать комментарий     Решение


Задача 52953

Темы:   [ Теоремы Чевы и Менелая ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9

В треугольнике ABC сторона AB равна 4, угол CAB равен 30o, а радиус описанной окружности равен 3. Докажите, что высота, опущенная из вершины C на сторону AB, меньше 3.

Прислать комментарий     Решение


Задача 56902

Темы:   [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 66594

Темы:   [ Теоремы Чевы и Менелая ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 10,11

Автор: Нилов Ф.

Внутри четырехугольника $ABCD$ взяли точку $P$. Прямые $BC$ и $AD$ пересекаются в точке $X$. Оказалось, что прямая $XP$ является внешней биссектрисой углов $APD$ и $BPC$. Пусть $PY$ и $PZ$ – биссектрисы треугольников $APB$ и $DPC$. Докажите, что точки $X$, $Y$ и $Z$ лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .