ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]      



Задача 54447

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC гипотенуза AB равна c и  ∠B = α.  Найдите все медианы этого треугольника.

Прислать комментарий     Решение

Задача 57596

Темы:   [ Теорема косинусов ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 3
Классы: 8,9,10

Докажите, что медианы AA1 и BB1 треугольника ABC перпендикулярны тогда и только тогда, когда  a2 + b2 = 5c2.
Прислать комментарий     Решение


Задача 53207

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Известно, что  AB = 4,  AC = 2  и  BC = 3.  Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.

Прислать комментарий     Решение

Задача 56885

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4
Классы: 8,9

а) В треугольниках ABC и A'B'C' равны стороны AC и A'C', углы при вершинах B и B' и биссектрисы углов B и B'.
Докажите, что эти треугольники равны (точнее говоря, треугольник ABC равен треугольнику A'B'C' или треугольнику C'B'A').
б) Через точку D биссектрисы BB1 угла ABC проведены прямые AA1 и CC1 (точки A1 и C1 лежат на сторонах треугольника).
Докажите, что если  AA1 = CC1,  то  AB = BC.

Прислать комментарий     Решение

Задача 115688

Темы:   [ Геометрические неравенства ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема синусов ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Хорды XK и XM окружности делят её диаметр AB на три равные части. Докажите, что 5KM 3AB .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .