ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 53629

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

B и C – две точки на сторонах угла с вершиной A. Окружности с диаметрами AC и AB вторично пересекаются в точке D. Прямая AB вторично пересекает первую окружность в точке K, а прямая AC вторично пересекает вторую окружность в точке M. Докажите, что прямые BM, CK и AD пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53927

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

BM и CN — высоты треугольника ABC. Докажите, что точки B, N, M и C лежат на одной окружности.

Прислать комментарий     Решение


Задача 54666

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку O1, касается окружности с центром O2 в точке M, а прямая, прходящая через точку O2, касается окружности с центром O1 в точке N. Прямые O1M и O2N пересекаются в точке P, а прямые O1N и O2N – в точке Q. Докажите, что  PQO1O2.

Прислать комментарий     Решение

Задача 56880

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

а) Докажите, что высоты треугольника пересекаются в одной точке.
б) Пусть H – точка пересечения высот треугольника ABC, R – радиус описанной окружности. Докажите, что  AH² + BC² = 4R²  и  AH = BC |ctg α|.

Прислать комментарий     Решение

Задача 65791

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC  AH1, BH2 – высоты, D – проекция H1 на AC, E – проекция D на AB,  F – точка пересечения ED и AH1.
Докажите, что  H2F || BC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .