Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 70]
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC.
Докажите, что прямая Эйлера треугольника ABC (см. задачу 55595) проходит через центр окружности девяти точек (см. задачу 52511).
|
|
Сложность: 4- Классы: 8,9,10
|
Перпендикуляр, восстановленный в вершине C параллелограмма ABCD к прямой CD, пересекает в точке F перпендикуляр, опущенный из вершины A на диагональ BD, а перпендикуляр, восстановленный из точки B к прямой AB, пересекает в точке E серединный перпендикуляр к отрезку AC. В каком отношении отрезок EF делится стороной BC?
Докажите, что в треугольнике шесть точек — середины сторон
и основания высот — лежат на одной окружности ("окружности
девяти точек").
Медианы AA0, BB0 и CC0 остроугольного треугольника ABC пересекаются в точке M, а высоты AA1, BB1 и CC1 – в точке H. Касательная к описанной окружности треугольника A1B1C1 в точке C1 пересекает прямую A0B0 в точке C'. Точки A' и B' определяются аналогично. Докажите, что A', B' и C' лежат на одной прямой, перпендикулярной прямой MH.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 70]