Страница:
<< 1 2 3 4 [Всего задач: 17]
|
|
|
Сложность: 5- Классы: 10,11
|
Шестиугольник ABCDEF вписан в окружность. Известно, что AB·CF = 2BC·FA, CD·EB = 2DE·BC, EF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.
|
|
|
Сложность: 5- Классы: 9,10,11
|
BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC.
Страница:
<< 1 2 3 4 [Всего задач: 17]