Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 121]
|
|
|
Сложность: 3+ Классы: 6,7,8
|
Доска 100×100 разбита на 10000 единичных квадратиков. Один из них
вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски
покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так,
чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и
чтобы треугольники не налегали друг на друга и не свисали с доски?
|
|
|
Сложность: 4- Классы: 9,10
|
В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0.
Докажите, что сумма чисел в таблице меньше 9.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?
|
|
|
Сложность: 4- Классы: 7,8,9
|
В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1.
Докажите, что плитка 1×1 либо лежит в центре, либо примыкает к границам квадрата.
|
|
|
Сложность: 4- Классы: 6,7,8
|
На плоскости нарисован чёрный равносторонний треугольник. Имеется девять
треугольных плиток того же размера и той же формы. Нужно положить их на
плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя
бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 121]