Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1282]
Две окружности пересекаются в точках A и B. Их центры
расположены по разные стороны от прямой, содержащей отрезок AB.
Точки K и N лежат на разных окружностях. Прямая, содержащая
отрезок AK, касается одной окружности в точке A. Прямая,
содержащая отрезок AN, касается другой окружности также в точке
A. Известно, что
Найдите площадь
треугольника KBN.
Две окружности пересекаются в точках K и C. Их центры
расположены по одну сторону от прямой, содержащей отрезок KC. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что AK = 2, BK =
, а tg∠AKB = –
. Найдите площадь треугольника ABC.
В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.
|
|
Сложность: 4- Классы: 8,9,10,11
|
К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что $CK = AB = BC$ и ∠ KAC = 30°. Найдите угол $AKB$.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1282]