Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1282]      



Задача 108642

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1 . На меньшей дуге AB описанной окружности выбрана такая точка L , что LC=CB . При этом оказалось, что BLB1 = 90o . Докажите, что высота AA1 делится высотой BB1 пополам.
Прислать комментарий     Решение


Задача 108670

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O . Окружность, описанная вокруг треугольника ABO , пересекает сторону AD в точке E . Окружность, описанная вокруг треугольника DOE , пересекает отрезок BE в точке F . Докажите, что BCA = FCD .
Прислать комментарий     Решение


Задача 108689

Темы:   [ Угол между касательной и хордой ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведена биссектриса BL . Через точку L к окружности, описанной около треугольника BLC , проведена касательная, пересекающая сторону AB в точке P . Докажите, что прямая AC касается окружности, описанной около треугольника BPL .
Прислать комментарий     Решение


Задача 108885

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Высоты AA1 и CC1 треугольника ABC пересекаются в точке H , а описанные окружности треугольников ABC и A1BC1 пересекаются в точке M , отличной от B . Докажите, что прямая MH делит сторону AC пополам.
Прислать комментарий     Решение


Задача 108952

Темы:   [ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Пусть ABCD – выпуклый четырёхугольник, M и N – середины его сторон AD и BC соответственно. Точки A , B , M и N лежат на одной окружности, прямая AB касается описанной окружности треугольника BMC . Докажите, что она также касается описанной окружности треугольника AND .
Прислать комментарий     Решение


Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .