ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1282]
В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.
Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.
В окружность радиуса 5 вписан квадрат. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 6. Найдите расстояния от этой точки до трёх других вершин квадрата.
Вокруг квадрата со стороной 3 описана окружность. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 2. Найдите расстояния от этой точки до трёх других вершин квадрата.
Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам.
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке