Страница:
<< 163 164 165 166
167 168 169 >> [Всего задач: 1275]
Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри треугольника ABC взята такая точка O, что ∠ABO = ∠CAO, ∠BAO = ∠BCO, ∠BOC = 90°. Найдите отношение AC : OC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AC = EC и AE : DE = m.
Найдите отношение BE : CE.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
|
|
Сложность: 3+ Классы: 7,8,9
|
AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что CK = CL. Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что AP = PL.
Страница:
<< 163 164 165 166
167 168 169 >> [Всего задач: 1275]