Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 501]
|
|
|
Сложность: 4+ Классы: 10,11
|
B выпуклом четырёхугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы
коротких палочек у букв ``Г'' обозначим через
A и
A'. Длинные палочки
разделены на
n равных частей точками
a1, ...,
an - 1;
a'1,
...,
a'n - 1 (точки деления нумеруются от концов длинных палочек).
Проводятся прямые
Aa1,
Aa2, ...,
Aan - 1;
A'a
1,
A'a'2,
...,
A'a'n - 1. Точку пересечения прямых
Aa1 и
A'a
1 обозначим
через
X1, прямых
Aa2 и
A'a
2 — через
X2 и т.д. Доказать, что
точки
X1,
X2, ...,
Xn - 1 образуют выпуклый многоугольник.
Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
Окружность, вписанная в угол с вершиной
O касается
его сторон в точках
A и
B ,
K – произвольная точка
на меньшей из двух дуг
AB этой окружности. На прямой
OB
взята точка
L такая, что прямые
OA и
KL параллельны.
Пусть
M – точка пересечения окружности
, описанной
около треугольника
KLB , с прямой
AK , отличная от
K .
Докажите, что прямая
OM касается окружности
.
Пусть M — точка пересечения биссектрис внутреннего угла B и
внешнего угла C треугольника ABC, а N — точка пересечения
биссектрис внешнего угла B и внутреннего угла C. Докажите, что
середина отрезка MN лежит на окружности, описанной около
треугольника ABC.
|
|
|
Сложность: 5- Классы: 8,9,10
|
Окружности
S1
и
S2
с центрами
O1
и
O2
пересекаются в точках
A и
B (см рис.). Луч
O1
B
пересекает окружность
S2
в точке
F , а луч
O2
B
пересекает окружность
S1
в точке
E . Прямая, проходящая
через точку
B параллельно прямой
EF , вторично пересекает
окружности
S1
и
S2
в точках
M и
N соответственно.
Докажите, что
MN=AE+AF .
Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 501]