Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 499]
|
|
Сложность: 5- Классы: 8,9,10
|
Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если AB = DE, то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.
Найти геометрическое место центров равносторонних треугольников, описанных
около данного произвольного треугольника.
|
|
Сложность: 6- Классы: 9,10,11
|
Пусть
ABCD – вписанный четырёхугольник,
O –
точка пересечения диагоналей
AC и
BD . Пусть окружности,
описанные около треугольников
ABO и
COD , пересекаются в
точке
K . Точка
L такова, что треугольник
BLC подобен
треугольнику
AKD . Докажите, что если четырёхугольник
BLCK
выпуклый, то он он является описанным.
|
|
Сложность: 6 Классы: 8,9,10,11
|
Окружность, вписанная в четырёхугольник
ABCD , касается его
сторон
DA ,
AB ,
BC и
CD в точках
K ,
L ,
M и
N
соответственно. Пусть
S1
,
S2
,
S3
и
S4
–
окружности, вписанные в треугольники
AKL ,
BLM ,
CMN и
DNK
соответственно. К окружностям
S1
и
S2
,
S2
и
S3
,
S3
и
S4
,
S4
и
S1
проведены общие касательные,
отличные от сторон четырёхугольника
ABCD . Докажите, что
четырёхугольник, образованный этими четырьмя касательными, – ромб.
|
|
Сложность: 3 Классы: 9,10,11
|
На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что AK = KN = DN и BL = BC = CM. Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 499]