Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 501]
Трапеция AEFG (EF || AG) расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны, EG = 10
. Найдите периметр трапеции.
Трапеция AEFG (EF || AG) расположена в квадрате ABCD со стороной 3 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG трапеции перпендикулярны, BF = 1. Найдите периметр трапеции.
На сторонах AB, AC и BC правильного треугольника ABC
расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если A1B1/AB = n.
|
|
Сложность: 4- Классы: 9,10
|
Остроугольный треугольник ABC вписан в окружность Ω. Касательные,
проведённые к Ω в точках B и C, пересекаются в точке P.
Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.
|
|
Сложность: 4- Классы: 9,10,11
|
На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.
Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 501]