ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 769]      



Задача 64345

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Две касательные, проведенные из одной точки ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10

Остроугольный треугольник ABC вписан в окружность Ω. Касательные, проведённые к Ω в точках B и C, пересекаются в точке P. Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.

Прислать комментарий     Решение

Задача 64782

Темы:   [ Сфера, описанная около тетраэдра ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.

Прислать комментарий     Решение

Задача 65165

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Угол между касательной и хордой ]
[ Четыре точки, лежащие на одной окружности ]
[ Неопределено ]
[ Инверсия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что  KM = MA.  Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.

Прислать комментарий     Решение

Задача 65236

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Автор: Якубов А.

Параллелограмм ABCD таков, что  ∠B < 90°  и  AB < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что  ∠EDA = ∠FDC.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 65243

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Дан параллелограмм ABCD, в котором  AB < AC < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что  ∠ABF = ∠DCE.  Найдите угол ABC.

Прислать комментарий     Решение

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .