ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 283]      



Задача 54808

Темы:   [ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами AB = 4, BC = 2, AC = 3 вписана окружность. Найдите площадь треугольника AMN, где M, N — точки касания этой окружности со сторонами AB и AC соответственно.

Прислать комментарий     Решение


Задача 54809

Темы:   [ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами AB = 8, BC = 6, AC = 4 вписана окружность. Найдите длину отрезка DE, где D и E — точки касания этой окружности со сторонами AB и AC соответственно.

Прислать комментарий     Решение


Задача 66411

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
[ Ортогональная (прямоугольная) проекция ]
[ Скалярное произведение ]
Сложность: 3+
Классы: 9,10,11

На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.
Прислать комментарий     Решение


Задача 52697

Темы:   [ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

Дана окружность и точка A вне её; AB и AC — касательные к окружности (B и C — точки касания). Докажите, что центр окружности, вписанной в треугольник ABC, лежит на данной окружности.

Прислать комментарий     Решение


Задача 52740

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC на основании AC взята точка M так, что AM = a, MC = b. В треугольники ABM и CBM вписаны окружности. Найдите расстояние между точками касания этих окружностей со отрезком BM.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 283]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .