Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 125]
На окружности S с диаметром AB взята точка C, из точки C опущен
перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и
окружности S1 с центром C и радиусом CH делит отрезок CH пополам.
На сторонах BC и AC треугольника ABC взяты
точки A1 и B1; l — прямая, проходящая через общие точки
окружностей с диаметрами AA1 и BB1. Докажите, что:
а) прямая l проходит через точку H пересечения высот
треугольника ABC;
б) прямая l тогда и только тогда проходит через точку C,
когда
AB1 : AC = BA1 : BC.
Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке F, а продолжения сторон BC
и AD — в точке E. Докажите, что окружности с диаметрами AC, BD
и EF имеют общую радикальную ось, причем на
ней лежат ортоцентры треугольников
ABE, CDE, ADF и BCF.
Три окружности попарно пересекаются в точках A1
и A2, B1 и B2, C1 и C2. Докажите, что
A1B2 . B1C2 . C1A2 = A2B1 . B2C1 . C2A1.
На стороне BC треугольника ABC взята точка A'.
Серединный перпендикуляр к отрезку A'B пересекает сторону AB
в точке M, а серединный перпендикуляр к отрезку A'C
пересекает сторону AC в точке N. Докажите, что точка,
симметричная точке A' относительно прямой MN, лежит на
описанной окружности треугольника ABC.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 125]