Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]
Решите задачу 1.67, используя свойства радикальной оси.
Внутри выпуклого многоугольника расположено несколько
попарно непересекающихся кругов различных радиусов.
Докажите, что многоугольник можно разрезать на
маленькие многоугольники так, чтобы все они были выпуклыми
и в каждом из них содержался ровно один из данных кругов.
а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и
радикальной осью.
Пусть
f (x, y) = x2 + y2 + a1x + b1y + c1 и
g(x, y) = x2 + y2 + a2x + b2y + c2.
Докажите, что для любого вещественного

1 уравнение
f -
g = 0
задаёт окружность из пучка окружностей, порождённого окружностями f = 0 и
g = 0.
Докажите, что любая окружность пучка либо пересекает радикальную ось в двух
фиксированных точках (эллиптический пучок),
либо касается радикальной оси в фиксированной точке (параболический
пучок), либо не пересекает радикальную ось
(гиперболический пучок).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]