Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 2251]
Основания трапеции равны a и b (a > b). Отрезки, соединяющие середину большего основания с концами меньшего основания,
пересекают диагонали трапеции в точках M и N. Найдите MN.
На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём AE : EB = 1 : 2, а CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12.
Найдите стороны параллелограмма.
На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6.
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 2251]