Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 2247]
На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём AE : EB = 1 : 2, а CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12.
Найдите стороны параллелограмма.
На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6.
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Через центр параллелограмма ABCD проведены две прямые. Одна из них пересекает стороны AB и CD соответственно в точках M и K, вторая – стороны BC и AD соответственно в точках N и L. Докажите, что четырёхугольник MNKL – параллеллограмм.
Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 2247]