Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 2254]
Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что ∠DMP = 3∠APM.
Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если CD = a.
[Теорема о средней линии трапеции]
|
|
Сложность: 3+ Классы: 8,9
|
Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.
Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.
Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Могут ли прямые BN и DM быть параллельными?
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 2254]