Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 2254]      



Задача 102306

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD ( AB$ \Vert$CD) диагонали AC = a, BD = $ {\frac{7}{5}}$a. Найдите площадь трапеции, если $ \angle$CAB = 2$ \angle$DBA.
Прислать комментарий     Решение


Задача 102307

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD ( AB$ \Vert$CD) AB + CD = b, диагонали AC и BD связаны соотношением 5AC = 3BD. Найдите площадь трапеции, если $ \angle$BAC = 2$ \angle$DBA.
Прислать комментарий     Решение


Задача 102415

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

В окружность $ \gamma$ с центром в точке O вписан четырёхугольник ABCD, диагонали которого перпендикулярны. Известно, что угол AOB втрое больше угла COD. Найдите площадь круга, ограниченного окружностью $ \gamma$, и сравните с числом 510, если CD = 10.

Прислать комментарий     Решение


Задача 102416

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

В окружность $ \beta$ с центром в точке O вписан четырёхугольник KLMN, диагонали которого перпендикулярны. Площадь круга, ограниченного окружностью $ \beta$ равна 1110. Найдите длину отрезка MN и сравните с числом 10, если известно, что угол MON в пять раз больше угла KOL.

Прислать комментарий     Решение


Задача 52780

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Сторона AB прямоугольника ABCD равна 12, а сторона стороны AD равна 5. Диагонали прямоугольника пересекаются в точке E. Найдите отношение расстояния от точки E до центра окружности, вписанной в треугольник AED, к расстоянию от точки E до центра окружности, вписанной в треугольник DEC.

Прислать комментарий     Решение


Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .