ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 173]      



Задача 52831

Темы:   [ Теорема синусов ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Найдите площадь ромба ABCD, если радиусы окружностей, описанных около треугольников ABC и ABD, равны R и r.

Прислать комментарий     Решение


Задача 53576

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

От параллелограмма с помощью прямой, пересекающей две его противоположные стороны, отрезали ромб. От оставшегося параллелограмма таким же образом вновь отрезали ромб, и от этого вновь оставшегося параллелограмма опять отрезали ромб. В результате остался параллелограмм со сторонами 1 и 2. Найдите стороны исходного параллелограмма.

Прислать комментарий     Решение


Задача 53649

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами ромба.

Прислать комментарий     Решение


Задача 54395

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Правильный треугольник ABC со стороной a и два ромба ACMN и ABFE расположены так, что точки M и B лежат по разные стороны от прямой AC, а точки F и C — по разные стороны от прямой AB. Найдите расстояние между центрами ромбов, если $ \angle$EAB = $ \angle$ACM = $ \alpha$ ( $ \alpha$ < 90o).

Прислать комментарий     Решение


Задача 57685

Темы:   [ Векторы сторон многоугольников ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .