ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173]      



Задача 54703

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки M и N лежат на сторонах соответственно AD и BC ромба ABCD, причём DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что сторона ромба равна a, а $ \angle$BAD = 60o.

Прислать комментарий     Решение


Задача 54342

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Ромбы. Признаки и свойства ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

Высота BK ромба ABCD, опущенная на сторону AD, пересекает диагональ AC в точке M. Найдите MD, если  BK = 4,  AK : KD = 1 : 2.

Прислать комментарий     Решение

Задача 54343

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Ромбы. Признаки и свойства ]
[ Прямоугольные треугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Высота BL ромба ABCD, опущенная на сторону AD, пересекает диагональ AC в точке E. Найдите AE, если  BL = 8,  AL : LD = 3 : 2.

Прислать комментарий     Решение

Задача 54344

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На сторону BC ромба ABCD опущена высота DE. Диагональ AC ромба пересекает высоту DE в точке F, причём  DF : FE = 5.
Найдите сторону ромба, если известно, что  AE = 5.

Прислать комментарий     Решение

Задача 54345

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На сторону BC ромба ABCD опущена высота DK. Диагональ AC пересекает высоту DK в точке M, причём  DM : MK = 13 : 7.
Найдите DK, если известно, что  AK = 17.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .