Страница: << 53 54 55 56 57 58 59 [Всего задач: 293]
|
|
Сложность: 4- Классы: 9,10
|
Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Докажите, что точки M, I, N лежат на одной прямой тогда и только тогда, когда AC + BC = 3AB.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию,
боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
|
|
Сложность: 4 Классы: 7,8,9
|
В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.
Страница: << 53 54 55 56 57 58 59 [Всего задач: 293]