|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Для каких n возможны равенства: a) φ(n) = n – 1; б) φ(2n) = 2φ(n); в) φ(nk) = nk–1φ(n)? |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167]
Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.
Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.
Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если AB = 3, BC = 10, CD = 4, AD = 12.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|