Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 507]
Окружность радиуса
r касается сторон многоугольника
в точках
A1,...,
An, причем длина стороны, на которой лежит
точка
Ai, равна
ai. Точка
X удалена от центра окружности на
расстояние
d. Докажите, что
a1XA12 + ... +
anXAn2 =
P(
r2 +
d2),
где
P — периметр многоугольника.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На сторонах выпуклого шестиугольника ABCDEF во внешнюю сторону построены равносторонние треугольники ABC1, BCD1, CDE1, DEF1, EFA1 и FAB1. Оказалось, что треугольник B1D1F1 – равносторонний. Докажите, что треугольник A1C1E1 также равносторонний.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?
Три пары противоположных сторон шестиугольника параллельны.
Докажите, что отрезки, соединяющие их середины пересекаются в
одной точке.
Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 507]