ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 507]      



Задача 57097

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5
Классы: 9

Окружность радиуса r касается сторон многоугольника в точках  A1,..., An, причем длина стороны, на которой лежит точка Ai, равна ai. Точка X удалена от центра окружности на расстояние d. Докажите, что a1XA12 + ... + anXAn2 = P(r2 + d2), где P — периметр многоугольника.
Прислать комментарий     Решение


Задача 66471

Темы:   [ Шестиугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 5
Классы: 8,9,10,11

На сторонах выпуклого шестиугольника ABCDEF во внешнюю сторону построены равносторонние треугольники ABC1, BCD1, CDE1, DEF1, EFA1 и FAB1. Оказалось, что треугольник B1D1F1 – равносторонний. Докажите, что треугольник A1C1E1 также равносторонний.
Прислать комментарий     Решение


Задача 110771

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 8,9,10,11

Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Прислать комментарий     Решение

Задача 55142

Темы:   [ Шестиугольники ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 5
Классы: 8,9

Автор: Газарян Т.

Три пары противоположных сторон шестиугольника параллельны. Докажите, что отрезки, соединяющие их середины пересекаются в одной точке.

Прислать комментарий     Решение


Задача 57089

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
[ НОД и НОК. Взаимная простота ]
Сложность: 5+
Классы: 9

Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .