Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 92]      



Задача 57058

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9

Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

Прислать комментарий     Решение

Задача 65669

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 4
Классы: 7,8,9

Автор: Обухов Б.

Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.

Прислать комментарий     Решение

Задача 66798

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Точка H лежит на стороне AB правильного пятиугольника ABCDE. Окружность с центром H и радиусом HE пересекает отрезки DE и CD в точках G и F соответственно. Известно, что DG=AH. Докажите, что CF=AH.
Прислать комментарий     Решение


Задача 66951

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 9,10,11

Авторы: Mudgal A., Tejaswi N.V.

Дан вписанный пятиугольник APBCQ. Точка M внутри треугольника ABC такова, что MAB=MCA, MAC=MBA и PMB=QMC=90. Докажите, что прямые AM, BP и CQ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66970

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .