Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 241]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно
середин отрезков BM и CM соответственно. Докажите, что L1P = L2Q.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите все углы α , для которых набор чисел sinα ,
sin2α , sin3α совпадает с набором cosα ,
cos2α , cos3α .
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 241]