ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 [Всего задач: 241]      



Задача 109826

Темы:   [ Вневписанные окружности ]
[ Радикальная ось ]
[ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Окружность, вписанная в угол ]
[ Отношения линейных элементов подобных треугольников ]
[ Центральная симметрия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9,10,11

Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .