Страница:
<< 42 43 44 45 46
47 48 >> [Всего задач: 239]
|
|
Сложность: 5- Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.
|
|
Сложность: 5 Классы: 10,11
|
На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.
|
|
Сложность: 5+ Классы: 9,10,11
|
На стороне
AB треугольника
ABC выбрана точка
D .
Окружность, описанная около треугольника
BCD , пересекает
сторону
AC в точке
M , а окружность, описанная около
треугольника
ACD , пересекает сторону
BC в точке
N
(точки
M и
N отличны от точки
C ). Пусть
O – центр
описанной окружности треугольника
CMN . Докажите, что
прямая
OD перпендикулярна стороне
AB .
|
|
Сложность: 9 Классы: 9,10,11
|
а) На плоскости даны
n векторов, длина каждого из которых
равна 1. Сумма всех
n векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех
k = 1, 2, ...,
n выполнялось следующее условие: длина суммы первых
k векторов не
превышает 3.
б) Докажите аналогичное утверждение для n векторов с суммой 0, длина каждого из которых не превосходит 1.
в) Можно ли заменить число 3 в пункте а) меньшим? Постарайтесь улучшить оценку и в пункте б).
Страница:
<< 42 43 44 45 46
47 48 >> [Всего задач: 239]