ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 239]      



Задача 57700

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 5+
Классы: 9

В выпуклом четырехугольнике сумма расстояний от вершины до сторон одна и та же для всех вершин. Докажите, что этот четырехугольник является параллелограммом.
Прислать комментарий     Решение


Задача 57720

Тема:   [ Вспомогательные проекции ]
Сложность: 5+
Классы: 9

Пусть a, b и c — длины сторон треугольника ABC, na, nb и  nc — векторы единичной длины, перпендикулярные соответствующим сторонам и направленные во внешнюю сторону. Докажите, что

a3na + b3nb + c3nc = 12S . $\displaystyle \overrightarrow{MO}$,

где S — площадь, M — точка пересечения медиан, O — центр описанной окружности треугольника ABC.
Прислать комментарий     Решение

Задача 57721

Тема:   [ Вспомогательные проекции ]
Сложность: 5+
Классы: 9

Пусть O и R — центр и радиус описанной окружности треугольника ABC, Z и r — центр и радиус его вписанной окружности; K — точка пересечения медиан треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника ABC. Докажите, что точка Z лежит на отрезке OK, причем OZ : ZK = 3R : r.
Прислать комментарий     Решение


Задача 57724

Тема:   [ Метод усреднения ]
Сложность: 5+
Классы: 9,10

Сумма длин нескольких векторов на плоскости равна L. Докажите, что из этих векторов можно выбрать некоторое число векторов (может быть, только один) так, что длина их суммы будет не меньше L/$ \pi$.
Прислать комментарий     Решение


Задача 57725

Тема:   [ Метод усреднения ]
Сложность: 5+
Классы: 9,10

Докажите, что если длины всех сторон и диагоналей выпуклого многоугольника меньше d, то его периметр меньше $ \pi$d.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .