Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
Существует ли на плоскости конечный набор различных векторов
,
, ...,
такой, что для любой пары различных векторов из этого набора найдётся такая
другая пара из этого набора, что суммы каждой из пар равны между собой?
Дан произвольный треугольник ABC и такая прямая l, пересекающая
треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну
точку.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Доказать, что cos 2π/5 + cos 4π/5 = – ½.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]