Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 563]
|
|
Сложность: 3+ Классы: 10,11
|
Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На
каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как
диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?
Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На
каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как
диагональ можно расположить двумя способами, причём плашек каждого сорта
имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали?
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.
В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.
В треугольнике ABC провели биссектрисы углов A и C.
Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.
Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 563]