Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 563]
|
|
Сложность: 3+ Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Докажите, что две различные окружности касаются тогда и только тогда,
когда они касаются некоторой прямой в одной и той же точке.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно. Известно, что $BH$ – биссектриса угла $ABO$. Отрезок из точки $O$, параллельный стороне $AB$, пересекает сторону $AC$ в точке $K$. Докажите, что $AH=AK$.
|
|
Сложность: 4- Классы: 6,7,8
|
Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Все вершины треугольника
ABC лежат внутри квадрата
K .
Докажите, что если все их отразить симметрично относительно точки
пересечения медиан треугольника
ABC , то хотя бы одна из
полученных трех точек окажется внутри
K .
Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 563]