Страница:
<< 107 108 109 110 111 112
113 >> [Всего задач: 563]
|
|
Сложность: 6- Классы: 9,10,11
|
Проведем через основание биссектрисы угла
A разностороннего треугольника
ABC отличную от стороны
BC касательную к вписанной в
треугольник окружности. Точку ее касания с окружностью
обозначим через
Ka . Аналогично построим точки
Kb
и
Kc . Докажите, что три прямые, соединяющие точки
Ka ,
Kb и
Kc с серединами сторон
BC ,
CA и
AB соответственно,
имеют общую точку, причем эта точка лежит на вписанной окружности.
|
|
Сложность: 3+ Классы: 9,10,11
|
Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.
В треугольнике ABC с углом B, равным 50°, и стороной BC = 3 на высоте BH взята такая точка D, что ∠ADC = 130° и AD = .
Найдите угол между прямыми AD и BC, а также угол CBH.
В треугольнике ABC с углом A, равным 40° и стороной
AB = на высоте AH взята такая точка D, что ∠BDC = 140° и CD = 1.
Найдите угол между прямыми AB и CD, а также угол B.
|
|
Сложность: 4- Классы: 10,11
|
В выпуклом пятиугольнике ABCDE: ∠A = ∠C =
90°, AB = AE, BC = CD, AC = 1. Найдите площадь пятиугольника.
Страница:
<< 107 108 109 110 111 112
113 >> [Всего задач: 563]