ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 58395

Темы:   [ Комплексные числа в геометрии ]
[ Свойства инверсии ]
[ Проективные преобразования плоскости ]
Сложность: 4+
Классы: 9,10,11

Докажите, что точки, соответствующие комплексным числам a, b, c, лежат на одной прямой тогда и только тогда, когда число $ {\frac{a-b}{a-c}}$, называемое простым отношением трех комплексных чисел, вещественно.
б) Докажите, что точки, соответствующие комплексным числам a, b, c, d, лежат на одной окружности (или на одной прямой) тогда и только тогда, когда число $ {\frac{a-c}{a-d}}$ : $ {\frac{b-c}{b-d}}$, называемое двойным отношением четырех комплексных чисел, вещественно.
Прислать комментарий     Решение


Задача 116294

Темы:   [ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетичные окружности ]
Сложность: 5
Классы: 8,9

Задача Паппа. III в. н.э.}На отрезке AB взята точка C и на отрезках AB , BC , CA как на диаметрах построены соответственно полуокружности α , β , γ по одну сторону от AC . В криволинейный треугольник, образованный этими полуокружностями, вписана окружность δ1 , в криволинейный треугольник, образованный полуокружностями α , β и окружностью δ1 , вписана окружность δ2 и т.д. (окружность δn вписана в криволинейный треугольник, образованный полуокружностями α , β и окружностью δn-1 , n=2,3, .. ). Пусть rn — радиус окружности δn , dn — расстояние от центра окружности δn до прямой AB . Докажите, что = 2n .
Прислать комментарий     Решение


Задача 52785

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетичные окружности ]
Сложность: 4-
Классы: 8,9

На отрезке AC взята точка B и на отрезках AB, BC, CA как на диаметрах построены полуокружности S1, S2, S3 по одну сторону от AC.
Найдите радиус окружности, касающейся всех трёх полуокружностей, если известно, что её центр удален от прямой AC на расстояние a.

Прислать комментарий     Решение

Задача 52464

 [Формула Эйлера]
Темы:   [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
Сложность: 4
Классы: 8,9

Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.
Прислать комментарий     Решение


Задача 55470

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .