Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 31]
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что точки, соответствующие комплексным числам
a,
b,
c,
лежат на одной прямой тогда и только тогда, когда число
, называемое
простым отношением трех комплексных чисел,
вещественно.
б) Докажите, что точки, соответствующие комплексным числам
a,
b,
c,
d,
лежат на одной окружности (или на одной прямой) тогда и только тогда, когда
число
:
, называемое
двойным отношением
четырех комплексных чисел, вещественно.
Задача Паппа. III в. н.э.}На отрезке
AB взята точка
C и на отрезках
AB ,
BC ,
CA как на диаметрах построены
соответственно полуокружности
α ,
β ,
γ по одну сторону от
AC . В криволинейный треугольник, образованный этими
полуокружностями, вписана окружность
δ1
, в криволинейный
треугольник, образованный полуокружностями
α ,
β и
окружностью
δ1
, вписана окружность
δ2
и т.д.
(окружность
δn вписана в криволинейный треугольник,
образованный полуокружностями
α ,
β и окружностью
δn-1
,
n=2
,3
, .. ). Пусть
rn — радиус окружности
δn ,
dn — расстояние от центра окружности
δn
до прямой
AB . Докажите, что
= 2
n .
На отрезке AC взята точка B и на отрезках AB, BC, CA как на диаметрах построены полуокружности S1, S2, S3 по одну сторону от AC.
Найдите радиус окружности, касающейся всех трёх полуокружностей, если известно, что её центр удален от прямой AC на расстояние a.
[Формула Эйлера]
|
|
Сложность: 4 Классы: 8,9
|
Докажите формулу Эйлера:
O1
O2
2
= R2
-2
rR ,
где
O1
,
O2
— центры соответственно вписанной
и описанной окружностей треугольника,
r ,
R — радиусы
этих окружностей.
Даны четыре окружности, каждая из которых касается внешним образом
двух из трёх остальных. Докажите, что через точки касания можно
провести окружность.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 31]