Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 289]
|
|
Сложность: 3+ Классы: 9,10,11
|
Имеется 100 палочек, из которых можно сложить 100-угольник.
Может ли случиться, что ни из какого меньшего числа этих палочек нельзя сложить многоугольник?
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.
В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?
Стороны AB, BC, CD и DA четырёхугольника ABCD равны соответственно сторонам A'B', B'C', C'D' и D'A' четырёхугольника A'B'C'D', причём известно, что AB || CD и B'C' || D'A'. Докажите, что оба четырёхугольника – параллелограммы.
В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
а) Докажите неравенство P ≥ 2BD.
б) В каких случаях это неравенство превращается в равенство?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 289]